Failure Mechanism at High Temperatures

Previous blog posts emphasized the importance of assessing the peak temperatures anticipated in a gasketed joint. Left unsaid has been why this matters. It’s probably obvious that polyurethane, nitrile and silicone gaskets all have a temperature at which they melt. More important, all will likely fail under prolonged exposure to temperatures near their melting point, due to a phenomenon called “creep.”.

Viscoelastic materials

Most gasket materials are viscoelastic. The “viscous” part means they have a propensity to flow slowly, like a thick gel and “elastic” refers to their ability to stretch and return to their original dimensions. However, elasticity has its limits. If the material is stretched too far it can’t return to its original size or shape, resulting in permanent “plastic deformation.”

Place a viscoelastic gasket material like polyurethane under load and it becomes thinner while simultaneously spreading outwards. This is “creep.” Releasing the load lets the material recover, but only to the extent that it has not been deformed plastically.

Creep relaxation

In a gasketed joint the material is compressed, either by the stretch of the flange bolts as they are tightened or by other retaining clamps. When first placed under load it starts to creep, but as the gasket thins the load lessens until the creep stops. This is termed creep relaxation. With good design this happens before the gasket reaches a point where the joint starts to leak.

Higher temperatures

Creep is related to temperature. When a polymer like polyurethane or styrene butadiene rubber gets warmer the molecular chains slide more readily. As a result it takes less force to produce a given movement. As the temperature approaches the melting point of the material, the force needed to produce a given movement falls quickly. To take one example, this means that at temperatures over 200 F (93 C) a nitrile gasket starts shows considerable creep.

Consider the material properties

Always select gasket material with the knowledge of the maximum temperatures expected. The more safety margin can be incorporated the less creep will be experienced, leading to a longer lasting gasket.

Facebook Twitter Linkedin Pinterest Plusone Digg Delicious Reddit Stumbleupon Tumblr Email