PTFE Gaskets

Why Use PTFE Seals in Food Industry Applications?

Commercial cooking kettles used for boiling and preparing foods usually have a food grade gasket around the lid. By creating a good seal this helps the vessel build and retain pressure. This raises the boiling point of water, shortening cooking time while also destroying pathogens. A defective gasket can result in food not reaching the required temperature, potentially creating a health hazard. Additionally, the gasket itself can provide places for bacteria to become established.

This gasket leads a hard life. Not only must it withstand the heat and pressure of cooking, but it’s also expected to go through multiple cleaning cycles. In addition, it’s essential that it not transfer anything or impart any taint to the food being cooked. Several materials are available for such gaskets, but in many situations the best sealing option is PTFE.

A Versatile Sealing Material

Polytetrafluoroethylene, or PTFE, better known by it’s DuPont tradename of Teflon, has a number of properties that make it an excellent choice for a food grade gasket. At the atomic level it consists of a long chain of carbon atoms, each one of which links to two fluorine atoms. This linkage is so strong that PTFE won’t bond to anything else, hence its non-stick properties.

PTFE doesn’t melt until 635°F and is usable at temperatures up to 260°F. At lower temperatures it remains flexible well below freezing, as low as -100°F or even lower, depending on formulation. It’s also a good electrical insulator. Of particular relevance for food industry gasket applications, it doesn’t absorb water and it’s biologically inert. It does however resist attack by almost all chemicals, including aggressive cleaning and disinfecting agents like chlorine dioxide.

PTFE Seal Alternatives

Other materials have properties that are close or superior to PTFE in some regards. Silicone for example is flexible at low temperature, has good compressibility and a higher upper temperature limit. However, silicone does not fare well with steam, which is found in many food preparation environments. It also lacks resistance to acids, alkalies and chlorinated solvents, so is limited in its potential as a food grade gasket.

FDA Approved Seal Material

Gaskets & Seals made entirely of PTFE are covered by 21 CFR 177.1550, meaning they have FDA approval for food industry use. (PTFE incorporating filler material may not meet FDA requirements.) At Hennig we can supply PTFE sealss in thicknesses ranging from 0.015″ to 0.50″. Call or email for further information.

PTFE Makes an Excellent Material for FDA Gaskets

Buying gaskets for dairy, brewery and food processing equipment is difficult. The choice is limited to FDA gaskets or FDA approved gasket material because it’s essential to avoid tainting or contaminating the product. Cleaning and sterilization routines are a way of life, so gasket material must stand up to high temperatures and caustic cleaning agents. And last, clamping forces are low in equipment like kettles, mixers and sanitary pipe fittings, so the material must be soft.

Polytetrafluoroethylene, (PTFE) sometimes referred to as Teflon®, meets all these requirements. That’s why it’s used for gasketing throughout the food industry. PTFE is listed by the FDA under 21 CFR 177.1550, although this approval really only covers virgin PTFE material. PTFE with markings, adhesive backing or filler can be used in food applications, providing the inks, adhesives and fillers also meet FDA standards. If purchasing gaskets like these for a food industry gasket application, have the material supplier confirm they qualify as FDA gaskets.

Some gasket materials will absorb traces of food preservatives, but PTFE is almost completely non-reactive. It doesn’t pick anything up and neither does it pass anything over so there’s no risk of food being contaminated with traces of elastomers or cleaning agents. The Shore D hardness of PTFE is around 50, so it’s soft and easily compressible. That’s important when pipes and vessels are secured with clamps rather than bolted flanges. PTFE also has the advantage of retaining its properties at temperatures as high as 400°F (204°C). That’s why it survives steam cleaning.

PTFE is not perfect though. It has a tendency to creep, which could lead to reduced clamping loads. This is because, unlike elastomeric gasket material, PTFE doesn’t cross-link, so bolted joints with PTFE gaskets may need occasional re-torquing.

In food processing it’s essential to use FDA gaskets. These will typically be PTFE, although some other materials are FDA approved too. If a gasket is going to contact food products it’s always best to discuss the application with the material supplier and make sure the correct material is chosen.

Properties of Neoprene Gasket Material

Neoprene, which is also known as “polychloroprene,” is a type of synthetic rubber produced by the polymerization of chloroprene. Neoprene gasket material has become very common due to the fact that it resists the likes of ozone, sunlight, oxidation and many petroleum derivatives. Additionally, neoprene is characterized as being weather-, combustion-, water- and chemical-resistant. As you can see, it’s popular because it is resistant to many types of damages. What’s more, it’s also resistant to damage from twisting and flexing.

Here’s a closer look at the properties of neoprene so you can judge whether or not it’s a good material for your application:

  • Stretch and cushioning properties: Neoprene is elastic and form-fitting, able to conform to various sizes and shapes. It’s also cushioning, able to absorb shock.
  • Various grades available: From cloth inserted neoprene, which is reinforced with nylon for additional stability, to flame retardant neoprene, which passes a variety of flammability specifications, there are several grades available to suit any application. Other popular grades include commercial, FDA approved, diaphragm and high tensile strength.
  • General gauge thicknesses vary in size from 3/32-inch up to 2 inches.
  • Hardness ratings vary from 40 to 80.
  • Plate finish.
  • Neoprene can withstand temperatures ranging from -20 degrees F to 180 degrees F.
  • Tensile strength ranges from 900 to 1,000 PSI.
  • Elongation ranges from 350% to 400%.
  • Finally, widths are 36 inches, 48 inches or 72 inches.
  • Pressure sensitive adhesive, or PSA, are available upon request.
  • We fabricate neoprene gaskets through proven manufacturing processes that include waterjet cutting, flash cutting and die cutting.

One other neat feature about neoprene is that it’s impermeable, meaning that it can work as a tight barrier to prevent the escaping of gases or liquids.

For more information on the neoprene material and neoprene gaskets, and to speak with someone about placing an order, contact us today.