October 2017

Gasket Material and the PxT Factor

PxT stands for pressure times temperature. It’s a factor used more and more to characterize the performance of gasket material. The advantage is that it addresses how elastomers like silicone, EPDM and neoprene lose strength at higher temperatures.

An Inverse Relationship

Specifications for elastomers call out temperature limits. What’s rarely appreciated is that these values may not be good in all applications. Unlike metals where hardness changes very little as temperature rises, elastomers soften. For example, neoprene sheet material may have a quoted upper limit of 250°F but at this temperature it’s strength will be far lower than at say 68°F.

In many sealing applications pressure isn’t a concern. If the neoprene gasket only seals against warm air, that reduction in strength may not affect performance. However, if it’s sealing a pipe flange in a steam system reduced strength could be a problem. Even though the temperature might not exceed the upper limit, sustained pressure could extrude the material out through the flange.

Pressure AND Temperature

PxT shows how a gasket material performs under varying pressures and temperatures. Here are two examples.

Specs for a neoprene gasket material show the upper-temperature limit as 250°F and the maximum pressure as 250 PSI. However, the maximum PxT factor for the material is only 20,000 (°F x PSI). If used in an application with a continuous operating temperature of 250°F peak pressure is just 80 PSI. (20,000/250 = 80)

A sheet of EDPM gasket material has a maximum temperature of 300°F, a pressure limit of 250 PSI and a PxT factor of 30,000. In this case, the material manufacturer is saying that if sealing against media with a pressure of 200 PSI, the temperature should not exceed 150°F. (30,000/200 = 150)

If In Doubt …

Every gasket material has an upper-temperature limit. It may fail if taken beyond that, but it could also fail at a lower temperature if the pressure is high. The best approach is always to consult a material specialist like those at Hennig Gasket.

Sponge vs. Foam Gasket Materials

The terms sponge and foam are used interchangeably but they’re not the same. Buy foam for a gasket application and you may find the joint leaks. Use sponge material for cushioning and you may not get the protection you expected. Sponge and foam both have cellular structures, but there are important differences between the two.

Different Processes

Producing foam material is similar to baking bread. A chemical reaction in the liquid mixture creates carbon dioxide gas that leaves a very open structure.

Sponge materials also use a chemical reaction to create gas bubbles, but these remain self-contained cells, each one isolated from its neighbors. Some manufacturers can control the size and distribution of these pores to produce very consistent material with highly predictable behavior.

Open and Closed

The foam production process leaves an open structure more like a mesh than a solid. The stiffness or rigidity of this structure depends on the polymer used – typically that’s PVC, polyethylene or polyurethane.

In contrast, in a sponge the pores influence material behavior. Unlike a foam material, when sponge is compressed the gas in each pore has nowhere to go. That results in strong compression set resistance and good compression recovery.

Sealing Properties

Foam and sponge materials both have the advantage of low density but behave very differently when asked to act as a barrier. The open cellular structure of foam material lets fluid pass through readily, even when compressed. Sponge however blocks the movement of gases and liquids. That makes sponge material a good choice in HVAC sealing applications.

Cutting sponge will open up the edge pores. This allows a limited amount of liquid retention but the body of the material still acts as a barrier.

Materials for Sponge Gaskets

Practically all elastomers can be manufactured with a closed cellular structure. Consequently, neoprene, EPDM, nitrile and silicone gasket material are all available as sponges. As with their solid variants, these can be purchased with varying levels of temperature resistance and strength. Talk to a material specialist at Hennig Gasket if you need more advice.

Adding a PSA to Your Gasket Material

Not all joints hold the gasket in place. Electrical cabinet doors, food mixers and HVAC access panels are situations that often lack mechanical gasket retention features. In such cases the gasket must be adhesively bonded to the frame, cover or lid. Adhesives can be messy and awkward to use, and that’s why it’s worth asking about gasket material with a coating of pressure sensitive adhesive (PSA.)

The advantages of “peel and stick”

PSA is bonded to the gasket material before shapes are cut out. On the reverse side, (away from the gasket material) there’s a release film which is peeled off before the gasket is installed.

The advantages of PSA-coated gaskets are:

  • Easier to install.
  • Stay in place when the joint is opened.
  • Facilitates “kiss-cutting”. This is when the die cutter goes all the way through the gasket material but stops short of the PSA release film. Kiss-cutting holds the individual gaskets together in a sheet or roll, making them easier to handle.

Material compatibility

Most gasket materials will take a PSA coating. For example, both neoprene and silicone gasket material can be ordered with PSA. The major exception is PTFE gasket material as this is naturally non-stick.

PSA cautions

A PSA used on gasket material becomes part of the joint and experiences the same temperatures, pressures and chemicals as the gasket itself. Accordingly, the PSA must be matched to the application. Silicone gaskets are a good example. As these are used for both high and low temperatures the PSA must be chosen appropriately. In some cases the available PSA’s will limit the service conditions.

PSA selection is of particular importance when installing food grade or FDA gaskets. For these applications the adhesive must also be food grade.

Replacing a PSA gasket can be time-consuming. This is because the old adhesive must be completely removed from the joint faces before the new gasket goes on.

Make life easier

Depending on the gasket material and the nature of the application, a PSA can simplify gasket installation. If “peel and stick” gaskets would simplify your next sealing job, talk to Hennig.