October 2015

Using Die Cut Gaskets for Electrical Enclosures

Electrical and electronic equipment should always go in an enclosure designed to protect it from water and dust. However, the enclosure is only as good as the gasket that seals it.

An electrical enclosure gasket needs to accommodate irregularities in the surfaces of both door and enclosure, and continue to seal after repeated opening and closing. It should also resist varying degrees of external pressure, depending the standard applicable.

Outdoors, the threat usually comes from rain, which may be wind-blown but seldom impacts the enclosure with significant force. In industrial situations, especially in the food, medical and pharma sectors, enclosures are often expected to resist high pressure washdowns.

Standards for ‘ingress protection’ are promulgated by several organizations, notably the International Electrotechnical Commission (IEC,) NEMA and UL. The IEC 60529 standard defines the IP levels that many engineers know. (IP65, 66 and so on.) NEMA standards are seen as more demanding in terms of not allowing water penetration but only address design intent. Only UL insists on third party testing to verify compliance.

Three types of gasket are used in enclosures:

  • strip
  • ‘foam-in-place’ (FIP)
  • die-cut

As the name suggests, a strip gasket is cut from sealing material and applied in lengths to the enclosure door. Inevitably that leaves gaps. Dust may be excluded but water can almost certainly penetrate.

For an FIP gasket liquid polyurethane is applied to one of the mating surfaces. As it cures a reaction makes it foam, producing a joint-free gasket. It’s a popular approach but tends to be messy and can be slow.

Die-cut gaskets are stamped from roll or sheet material and are the shape of the enclosure sealing face. The absence of joints means no leak paths. Material selection depends on applications requirements although neoprene or silicone are often good choices. Installation is just a matter of fitting them in place, usually with an adhesive.

Hennig Gasket & Seals can die-cut gaskets as large as 36″ x 62″. For larger gaskets flash (an oscillating knife,) or waterjet cutting are available.  Contact us Today.

Selecting FDA Gasket Material for Food Industry Applications

An FDA investigation of a food contamination incident found a gasket at the root of the problem. Cleaning agents weren’t penetrating small cracks and E. Coli was able to gain a foothold. In their findings, the FDA suggested inspectors should:

  • Look at how frequently a food manufacturer inspects and replaces gaskets
  • Challenge the effectiveness of Clean-in-Place (CIP) procedures
  • Verify that gasket material is FDA approved for use

Responsible food manufacturers conduct rigorous cleaning and inspection regimens. Whenever any doubt exists as to the fitness of a gasket it gets replaced, but that presents those performing the refurbishment with the question of what material to use.

The FDA maintains listings of approved FDA gasket materials. PTFE and many elastomers such as NBR, SBR and EPDM are included, but two points are sometimes overlooked by those shopping for FDA gaskets. First, any markings, such as part numbers or other information used for traceability must also be FDA compliant. Second, any adhesives used to hold the gasket in place must also comply with FDA requirements.

Where should FDA gaskets be used?

Any surface coming into direct contact with food must be manufactured from materials known to be safe. (“Safe” in this context means either materials already listed by the FDA or those it considers “Generally Recognized As Safe” (GRAS).) This includes gaskets used in food preparation equipment such as kettles and mixing vessels, as well as those used in sanitary couplings; the kind of fittings used for moving dairy or brewery products.

How to select appropriate materials?

One approach would be to trawl through the various applicable FDA documents, noting which would work in your application. A less time-consuming approach is to ask your gasket vendor for advice. Describe your application in detail, particularly the temperatures and pressures involved and the cleaning regimens employed, and they’ll know which materials are suitable. You’ll receive FDA gaskets that work in your application and contamination risks will be reduced.